PIC simulation study of the interaction between a relativistically moving leptonic micro-cloud and ambient electrons
نویسندگان
چکیده
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Aims. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma. Methods. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially chargeand current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times. Results. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the cloud’s velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma. Conclusions. Relativistic clouds of leptons can generate and amplify magnetic fields even if they have a microscopic size, which implies that the underlying processes can be studied in the laboratory. The interaction of the localized magnetic field and high-energy leptons will give rise to synchrotron jitter radiation. The wakefield in the background plasma dissipates the kinetic energy of the lepton cloud. Even the fastest lepton micro-clouds can be slowed down by this collisionless mechanism. Moderately fast chargeand current neutralized lepton micro–clouds will deposit their energy close to relativistic shocks and hence they do not constitute an energy loss mechanism for the shock.
منابع مشابه
EFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS
Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...
متن کاملPIC simulation of a strong double layer in a nonrelativistic plasma flow: Electron acceleration to ultrarelativistic speeds
Two chargeand current neutral plasma beams are modelled with a one-dimensional PIC simulation. The beams are uniform and unbounded. The relative speed between both beams is 0.4c. One beam is composed of electrons and protons and one out of protons and negatively charged oxygen (dust). All species have the temperature 9 keV. A Buneman instability develops between the electrons of the first beam ...
متن کامل1D PIC simulation study of nonlinear beam plasma interaction
Since the early days of plasma simulation studies, superthermal electrons having energies much greater than the injected beam electrons have been widespreadly observed. The origin of such superthermal tail in the electron velocity distribution is generally believed due to the second order Fermi acceleration, i.e., the acceleration due to turbulence. In this paper, generation of superthermal ele...
متن کاملSimulation study of electron drift and gas multiplication in Micro Pixel Chamber
The physical processes of charge collection and gas multiplication of a Micro Pixel Chamber (μ-PIC) were studied in detail using a three-dimensional simulation. The collection efficiencies of primary electrons and gas multiplication factors were calculated for several electrode structures. Based on those studies, we analyzed the optimization of the electrode structure of the μ-PIC, in order to ...
متن کاملEvaluation of Iridium_192 radioisotope dosimeter calculations for vascular Brachiotherapy
Introduction: One of the most effective means for treatment of coronary arteries cramp (CHD) is coronary intravascular Brachiotherapy. In this study, with use of MCNP code, in order to invastigating the score of ditribution of absorbed dose, drope in dose, and simulation mean, radiation doses around iridium_192 radioactive has been done. Materials and Methods:</str...
متن کامل